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Introduction

Programming parallel machines is complex
» Extract parallelism; while
» Minimizing data movements
Execution models:

» Fork-Join (Bulk-Synchronous): promotes data locality and
tolerates idle times

» Data-Driven (Asynchronous): keeps processors busy to the
detriment of data locality

=Trade-off: data locality vs. minimizing idle times

Proposition
Study this trade-off on Multi-Cores + the Fast Multipole Method (FMM)
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The Fork-Join Model k
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The Fork-Join Model

Input Data

Tasks
executed
Syng. by a team
. . Barier of threads
» Execution = multiple steps >

synchronized by global barriers
» Each stepis executed in parallel
» Astep may work on a subset of

data — Possibility to exploit data
locality

fork-join
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ez
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The Data-Driven Model

Input Data

» Breaks global synchronizations
into fine-grain local
synchronizations

» Runtimes and schedulers extract
parallelism and minimize idle
times

» Difficult to express locality and

possible loss in cache
performance

Output Data
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Trade-Off: Data locality vs. idle times
Data locality vs. Idle times trade-off
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Parallel execution models exhibit a trade-off between data-locality and
computational units idle times:

Bulk-synchronous (Fork-join) ———> Fine-grain data-driven

Data-movements

= We study the extreme cases: Bulk-Synchronous vs. Fine-grain
data-driven methods
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The Fast Multipole Method (FMM)
The Fast Multipole Method
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» Solves n-body problems with O(N) complexity
» Used in many scientific simulations:

RGeS

1

Elctrodynamics Fluid dynamics 2 Blood flow 3

15‘ Chaillat, M. Bonnet, J.F. Semblat: A multi-level fast multipole bem for 3-d elastodynamics in the frequency
domain. Computer Methods in Applied Mechanics and Engineering 197 (2008)

2 R. Yokota, T. Narumi, L.A. Barba, K. Yasuoka: Petascale turbulence simulation using a highly parallel fast multipole
method. (2011)

3A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malhotra, L. Moon, R. Sampath, A.

Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros, Petascale Direct Numerical Simulation of Blood Flow on 200K
Cores and Heterogeneous Architectures, SC 2010
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Basics of FMMs: Domain decomposition
Corresponding quad-tree
2D domain decomposition example
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Basics of FMMs: Interaction lists

Interaction lists for a
target box B in a quad-treel
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multipole method for state-of-the-art multicore architectures". IPDPS (2010)
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The Fast Multipole Method (FMM) k
Basics of FMMs: Interaction lists

Interaction lists for a
target box B in a quad-treel

1. Near field direct evaluation
v v v v
y » U-list: Compute intensive
u U v v 2. Farfield approximation
» Upward: Parent-children
v v 8 v dependencies
v PIEEET, x » V-list: Memory intensive
v U Tw w » Xand W-lists: High workload
variation
v v v v » Downward: Parent-children
X dependencies
\ v v v

1A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, R. Vuduc: Optimizing and tuning the fast

multipole method for state-of-the-art multicore architectures". IPDPS (2010)
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Fork-Join implementation of the FMM1

Sources

[ |
» Each step implemented with ; ? ; ?
OpenMP work-sharing constructs
» Upward and Downward:
level-by-level synchronization

<f><f><i><f><%><ﬁ>
» U-list and V-list: manual

partitioning for improved
load-balancing

» Xand W-list: OpenMP static
scheduler &> & &> @D
| | | | | | | |
Targets

1

A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, R. Vuduc: Optimizing and tuning the fast

multipole method for state-of-the-art multicore architectures. IPDPS (2010)
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FMM Implementations Data-Driven FMM

Data-Driven implementation of the FMM

Data-Driven FMMs related work:

» Based on task schedulers: Quark?,
StarPUZ, and others

» Overhead: task management + data
dependency tracking

Proposition
» Lightweight threads: low overhead
task management

» Manual synchronization: atomic
counters + task nesting

1Ltaief, H., Yokota, R.: Data-driven execution of fast multipole methods. (2012)

2Agu|lo, E.,Bramas, B., Coulaud, O., Darve, E., Messner, M., Takahashi, T.:Pipelining the fast multipole method over
aruntime em. (20
A. AMER (Tokyo Institute of Technology) June 2013 19/38




FMM Implementations Data-Driven FMM

MassiveThreads library?

» Cilk2-like runtime: Work-first
scheduling with inter-worker
work-stealing

» Low overhead task
management

» Private queues per worker
which enables Distributed
Scheduling

1 http://code.google.com/p/massivethreads/

http://supertech.csail. mit.edu/cilk/
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Low overhead
task creation

Task creation graph
(not dependencies) T

Tasks
(Lightweigt]

Private queues

Workers g g

Cores Core 0 Core 1
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Data-Driven FMM
Data-Driven FMM: implementation details
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Fine-grain tasks where each task:
» Operates at the tree node level
» Isembedded in a lightweight thread

» May recursively create other tasks
which enables subtree working-sets

A Task has two parts:
» Computation

» Synchronization in two steps

» Update sync. counters
» Dependent task creation

A. AMER (Tokyo Institute of Technology) June 2013
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Data-Driven FMM
Data-Driven FMM: implementation details
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voidx V (src){
for(trg in Vlist(src))

{
compute_V(trg,src);
trg.down_counter++;
if (trg.down_counter
create_task (Down,
}
}

» Computation
» Synchronization in two steps

» Update sync. counters
» Dependent task creation

A. AMER (Tokyo Institute of Technology) June 2013
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Test-bed Configuration k
Target Multi-Core Architectures

Sandy-Bridge-EP  Nehalem-EX Magny-Cours

Processor Xeon E5-2620 Xeon X7550 Opteron 6172
CPU Frequency (Ghz) 20 20 2.1
#NUMA-nodesx#Cores  2x6 4x8 8x6

L3 Cache size (MB) 15 18 6

Total Memory BW (MB/s) 52590.4 68827.3 74720.4

NUMA nodes topology for each machine

O—Q@@ﬂ

Sandy-Bridge-EP Nehalem-EX Magny-Cours
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Simulation Input
Particle Distribution Corresponding Oct-tree

Elliptical

1The particle distribution and oct-tree figures were obtained with a small problem size for simplicity reasons. For
the other experiments, 4 millions particles were used with 250 particles per boxe.
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The Fork-Join FMM bottlenecks at scale
The Fork-Join FMM bottlenecks at scale
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80% | 80% |

60% — ] Downward
X-list
W-list

B V-list

W U-list

[] Upward

60%

40% 40%

20% | 20% -

Percentage of execution time
Percentage of execution time

0% 0%

1 2 4 8 16 24 32 48
#Cores #Cores
(a) Uniform distribution (b) Elliptical distribution

» Single thread execution: U-list and V-list are bottlenecks

» Larger scale: in addition to V-list Upward and Downward (often
neglected) consume more time than U-list
» Need an optimized implementation for each stage
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Performance Evaluation and Analysis Comparative Analysis

Comparative strong scaling

Uniform

Elliptical
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The data-driven method, as compared to the original design:

» Gives similar performance for a uniform distr.

» Scales better for the irregular distr. (except in the case of

Magny-Cours at high core count, likely due to the small cache size)
A. AMER (Tokyo Institute of Technology)
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Comparative Analysis
Under the hood: Execution trace

Data-driven method re-
sults:

» Global
synchronization
eliminated

» Upward kernels
faster (better data
reuse)

» V-list kernels slower
(likely cache
contention)

PursuingExcellence
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Executiontrace onthe Magny cours machine

Process 0
Thread 0:2
Thread 0:4
Thread 0:6
Thread 0:8

Thread 0:10 -
Thread 0:12 -
Thread 0:14 -
Thread 0:16 -
Thread 0:18 -
Thread 0:20 -
Thread 0:22 -

Process 0
Thread 0:2
Thread 0:4
Thread 0:6
Thread 0:8
Thread 0:10
Thread 0:12
Thread 0:14.
Thread 0:16
Thread 0:18
Thread 0:20
Thread 0:22
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Exclusive kernel execution time
0s
Down_comp

36.688 v

48,5275 v

= The data-driven execution does not address the memory mtenswe
kernel bottleneck, but makes it worse!
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Comparative Analysis
Why Upward has a better data locality?
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Uniform Oct-trees, color = thread

OpenMP with a guided scheduler Data-Driven
=Potential lose of inter-level =High inter-level
data locality data locality
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Performance Evaluation and Analysis Comparative Analysis

Why Upward has a better data locality?

Irregular Oct-tree, color = thread Trace with an Elliptica

Process 0
Thread 0:2
Thread 0:4
Thread 0:6

Thread 0:8

Process 0

Thread 0:18
Thread 0:20
Thread 0:22

Sub-tree partitioning with 8 threads

Thread 0:10 -
Thread 0:12 -
Thread 0:14 -
Thread 0:16 -
Thread 0:18 -

Thread 0:20 -

Thread 0:22 -

Thread 0:2
Thread 0:4 -
Thread 0:6  °
Thread 0:8 -
Thread 0:10 -
Thread 0:12 °
Thread 0:14 -
Thread 0:16 -
—
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| distr.

Kernel execut tion time

"
===

3074

OpenMP for guided scheduler

~
-

o

T

11

Kernel execut

OMP_SYNC

tion time

s
Up_comp
OMP_SYNC

Manual sub-tree partitioning

= Better to keep data local and have more idle times than being

dynamic and increase data movements!
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Performance Evaluation and Analysis Memory-intensive Kernel Analysis l
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V-list source-target interactions

V-list interactions in an Elliptical distr.

2500

» Reads from a source vector
and writes into a target vector

» Source-target vector elements
relationship: sparse matrix

SRC

» Sparse data access patternin
non-NUMA aware fashion

500 1000 1500 2000 2500

A. AMER (Tokyo Institute of Technology) June 2013 35/38



Performance Evaluation and Analysis Memory-intensive Kernel Analysis

Roofline Model Analysis

» Arithmetic intensity and
GFlops: performance counters

» Bandwidth roof and ceilings:
Stream benchmark?

» V-list performance limited by
the bandwidth ceilings

» Currently the main bottleneck
for both parallel execution
methods
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Roofline plot for the Sandy-Bridge-EP

Performance (GFlops/s)

Machine

16
Arithmetic Intensity (Flops/Byte)

1McCaIpin, J.D.: Memory bandwidth and machine balance in current high performance computers. IEEE Computer
Society Technical Committee on Computer Architecture TCCA Newsletter (1995)
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Conclusion and Future Work

» Low overhead fine-grain Data-Driven execution of FMM using
distributed task scheduling

» Data-Driven showed a better trade-off between data locality and
synchronization overheads

» This method made worse the memory intensive kernel execution

Future work:
» More tuning can be performed
» Tuning the task granularity
» Hiding V-list memory latency by the other computations
» Blocking source data in V-list
» Enlarge the study to other irregular algorithms and many-core
architectures

» Building runtimes which take into account the costs of
data-movements and idle times

June 2013

A. AMER (Tokyo Institute of Technology) 38/38



	Introduction
	The Fork-Join Model
	The Data-Driven Model
	Trade-Off: Data locality vs. idle times
	The Fast Multipole Method (FMM)

	FMM Implementations
	Fork-Join FMM
	Data-Driven FMM

	Performance Evaluation and Analysis
	Test-bed Configuration
	The Fork-Join FMM bottlenecks at scale
	Comparative Analysis
	Memory-intensive Kernel Analysis

	Conclusion and Future Work

